アウトライン

- 1. はじめに
- ... 光と物質の相互作用
 - 物質の中の光
 - 1. 波動方程式, 複素屈折率と減衰率
 - 2. 因果律とクラマース・クローニッヒの関係式
 - 光に対する物質の応答
 - 3. 金属の光学応答:ドルーデモデル
 - 4. 金属以外の光学応答: ローレンツモデル
 - 5. 半古典的モデルによる物質の光学応答
 - 6. 半導体の光学応答
- Ⅲ. 光の量子論の基礎
 - 7. 粒子性と波動性
 - 8. 電磁界の量子化:光子数状態・コヒーレント状態
 - 9. 昇降演算子
 - 10. 自然放出

半古典的モデル

異なるエネルギーの量子準位間で遷移するとき、光を吸収/増幅する。 どういうことか?

まず、直観的イメージ(1/2)

- *φ*₁, *φ*₂, ... は、<u>光を照射していないときの</u>エネルギー固有状態を表す。
- 例えば、水素原子の場合、クーロンポテンシャル下でシュレディンガー 方程式の固有解を求めると、1s, 2s, 2p, ... が得られる。(後述する)
- <u>電子の波動関数Ψは、φ₁, φ₂, …の線形和として表される</u>。※

※一般に、エネルギー準位の図中の●は、"その固有状態にある"という意味で用いられる。しかし、定常状態でない 限り、エネルギーの固有値を持たない(エネルギーが確定していない)ことは良くある。その意味では、1,0で表現 するよりも、上図のように半透明の●で表す方が適切と言える。

まず、直観的イメージ(2/2)

時間に依存したシュレディンガー方程式

電子の波動関数 $\Psi(\mathbf{r}, t)$ は、次式に従って時間変化する。

$$\frac{\partial \Psi}{\partial t} = -\frac{i}{\hbar} H \Psi \qquad (1)$$
ただし、
$$1 = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) \qquad (2)$$

$$|\Psi(\mathbf{r}, t)|^2 : 時刻t \ | c = F i d = r \ | c = F i d = r \ | c = F i d =$$

1次元の場合、 (2) → ハミルトニアン $H(x,t) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x,t)$ (2')

エネルギー固有状態

光照射前(摂動がないとき)のエネルギー固有関数を $\phi_n(\mathbf{r})$ とし、

 $H_0\phi_n(\mathbf{r}) = E_n\phi_n(\mathbf{r}) \quad (n = 1, 2, ...)$ (3)

を満たす関数と定義する。 ここで、 $H_0(\mathbf{r}) \equiv -\frac{\hbar^2}{2m} \nabla^2 + V_0(\mathbf{r})$ は、<u>光照射前の</u> <u>時間変化のないハミルトニアン</u>である。/ $\phi_n(\mathbf{r})$ |²は空 間的な確率分布を表し、 E_n をエネルギー固有値と 呼ぶことにする。

次に、エネルギー固有状態 $\varphi_n(\mathbf{r},t)$ が、時間が経過しても常に $\phi_n(\mathbf{r})$ の空間分布を持つと仮定し、[※]

$$\varphi_n(\mathbf{r},t) = A_n(t)\phi_n(\mathbf{r}) \qquad (4)$$

と表す。

(1) において、 $\Psi(\mathbf{r},t) = \varphi_n(\mathbf{r},t), H = H_0$ として、(3)を用いると、

※「なぜ仮定できるのか?」納得できない人もいるだろう。それは、その結果得られる次頁(5)-(7)が(1)を満たすからである! 結局のところ、我々は(1)を満たす解の形を探しているだけで、(4)を仮定したら上手く見つかった、ということに過ぎない。

$$A_n(t) = \exp\left(-\frac{iE_n}{\hbar}t\right)$$

$$\Rightarrow \quad \therefore \quad \varphi_n(\mathbf{r}, t) = \phi_n(\mathbf{r}) \exp\left(-\frac{iE_n}{\hbar}t\right)$$

が、(1)の解になることが分かる。

つまり、エネルギー固有状態 $\varphi_n(\mathbf{r}, t)$ は、 エネルギー固有値 E_n に比例して、時間的に振動する。

$$\varphi_{n}(\mathbf{r},t) = \phi_{n}(\mathbf{r}) \exp(-i\omega_{n}t) \qquad (5)$$

$$H_{0}\phi_{n}(\mathbf{r}) = E_{n}\phi_{n}(\mathbf{r}) \qquad (6)$$

$$\omega_{n} \equiv E_{n}/\hbar \qquad (7)$$

この振動数は、時間的に一定で変わらない。 つまり、E_nは、時間に対して保存される"エネルギー"を表す。

固有状態の完全性と直交性

※フーリエ級数展開と同様

◆完全性

ー般に、固有状態は完全系をなす。つまり、任意の波動関数は複数 のエネルギー固有状態の線型和として表すことができる。

$$\Psi(\mathbf{r},t) = \sum_{n} c_{n} \varphi_{n}(\mathbf{r},t) = \sum_{n} c_{n} \phi_{n}(\mathbf{r}) \exp(-i\omega_{n}t) \qquad (8)$$

$$(c_{n} lt 複素数)$$

◆直交性

固有関数 $\phi_m(\mathbf{r})$ は、直交系をなす。

$$\int \phi_m^*(\mathbf{r})\phi_n(\mathbf{r}) \, d\mathbf{r} = \begin{cases} 1 \ (m=n) \\ 0 \ (m\neq n) \end{cases}$$
(9)

※どちらも、ハミルトニアンH₀がエルミート演算子であることから数学的に導かれる。一般に、エルミート演算子(A[†]= A を満たす演算子A)の固有関数は、完全性と直交性を満たす。

(例えば、Miller, "Quantum Electronics for Scientists and Engineers," pp. 121-122, Cambridge)

例1:中心力(水素原子)の固有状態

斎木敏治, 戸田泰則, "光物性入門," p. 103 (朝倉書店).

例2:1次元井戸型ポテンシャル

$$V_0(x) = \begin{cases} 0 & (|x| < L/2) \\ \infty & (|x| \ge L/2) \end{cases}$$
(1)

#87(6), #85(2') より

...

$$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V_0(x)\right]\phi_n(x) = \mathcal{E}_n\phi_n(x) \qquad (2)$$

•
$$|x| \ge \frac{L}{2}$$
 is that $\phi_n(x) = 0$ (3)
• $|x| < \frac{L}{2}$ is that $-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \phi_n = E_n \phi_n$ by,
 $\phi_n(x) = A \cos k_n x + B \sin k_n x$ (4)
 $t = t \ge L$, $k_n = \frac{\sqrt{2mE_n}}{\hbar}$ (5)

(3)より境界条件 $\phi_n(\pm L/2) = 0$ なので、(4) より $k_n = \frac{n}{L}n$ ただし、nが奇数のとき $A \neq 0, B = 0$ 、nが偶数のとき $A = 0, B \neq 0$

例2:1次元井戸型ポテンシャル

: E_nの小さい順に

$$\phi_1(x) = \sqrt{\frac{2}{L}} \cos\left(\frac{\pi}{L}x\right)$$
(6)

$$\phi_2(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi}{L}x\right)$$
(7)

$$\phi_3(x) = \sqrt{\frac{2}{L}} \cos\left(\frac{3\pi}{L}x\right)$$
(8)
•
•
•

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2$$
(9)

ただし、規格化条件#88(9)を満たすようにA, Bを求めた。 $\phi_n(x)$ が#88(9)の両方の式を満たすことを確かめよ。

#87(5),(7)より、

$$\varphi_n(x,t) = \phi_n(x) \exp(-i\omega_n t) \quad (10)$$
$$\omega_n = \frac{\hbar}{2m} \left(\frac{\pi}{L}\right)^2 n^2 \quad (11)$$

2準位系における光遷移

他の準位の寄与が無視できるとき、完全性(#88)より、Ψ(x,t)は、

$$\Psi(x,t) = c_1(t)\varphi_1(x,t) + c_2(t)\varphi_2(x,t)$$
(3)

と表すことができるはず。 ただし、正規化条件∫[∞]_{−∞}|Ψ|²dx = 1 、および #88(9)より

$$|c_1(t)|^2 + |c_2(t)|^2 = 1$$
(4)

※本講義では、基本原理を定量的に理解する目的で、簡単に解析できる1次元井戸型ポテンシャルの2準位系 を例として教える。しかし、この後#93~#107で導出することは、*φ*nの具体的な形によらず一般的に成り立つ。*φ*n が複雑な場合は、一般に解析的に解けないが、数値計算で求めれば良い。

2準位系における光遷移

<u>c₂(t) の時間変化率が遷移確率を表すはず</u>
 →時間依存摂動論を用いて定量的に求める

②光照射時

時間に依存したシュレディンガー方程式(#81(1))は、

$$\frac{\partial \Psi}{\partial t} = -\frac{i}{\hbar} [H_0 + \Delta V(x, t)] \Psi$$
(1)

ただし、 H_0 は光照射前(摂動なし)のハミルトニアン $H_0 = -\frac{\hbar^2}{2m}\nabla^2 + V_0(x)$ (2)

 $\Delta V(x,t)$ は光によるポテンシャルの変化(摂動)を表し、今の例では、

$$\Delta V(x,t) = -\mu_x E \tag{3}$$
$$\mu_x \equiv -ex \tag{4}$$

$$\Psi(x,t) = c_1(t)\varphi_1(x,t) + c_2(t)\varphi_2(x,t)$$
(5)
を(1)に代入して、

$$\frac{dc_1}{dt}\varphi_1 + \frac{dc_2}{dt}\varphi_2 = -\frac{i}{\hbar}(c_1\Delta V\varphi_1 + c_2\Delta V\varphi_2) \tag{6}$$

ただし、 $\varphi_1(x,t), \varphi_2(x,t)$ は H_0 の固有値なので(#90-91)、

$$H_0 \varphi_n = i\hbar \frac{\partial \varphi_n}{\partial t} = (\hbar \omega_n) \varphi_n \quad (n = 1, 2)$$
 (7)
を用いた。

(6)中の $\frac{dc_2}{dt}$ の項を抽出したい。どうすれば良いか? $\rightarrow \varphi_n (\propto \phi_n)$ の直交性(#88)を用いる (⇔ フーリエ逆変換と同じ発想)

: (6)の両辺に
$$\varphi_2^* = \phi_2^* \exp(i\omega_2 t)$$
をかけて、 $\int_{-\infty}^{\infty} dx$ すると、
#87(5)と #88 (9)を用いて

$$\frac{dc_2}{dt} = -\frac{i}{\hbar} \left(c_1 \int_{-\infty}^{\infty} \varphi_2^* \Delta V \varphi_1 dx + c_2 \int_{-\infty}^{\infty} \varphi_2^* \Delta V \varphi_2 dx \right)$$
(8)

いま、光による摂動が小さく、 $|c_2| \ll |c_1|$ のとき^{*}を考えると、(8)の右辺で $|c_1| \approx 1$, $|c_2| \approx 0$ としても大差ないはず。

※この仮定は、「元々の背景のポテンシャルV₀に比べて光電界の影響△Vが小さいため、 分極は光電界に比例する」とした線型感受率の仮定(#19)と等価である。

∴ (8)に上の仮定を用い、#87(5), (7)を代入すると、

$$\frac{dc_2}{dt} = -\frac{i}{\hbar} \langle \phi_2 | \Delta V | \phi_1 \rangle e^{i\omega_{21}t}$$
(9)

ただし、
$$\langle \phi_2 | \Delta V | \phi_1 \rangle \equiv \int_{-\infty}^{\infty} \phi_2^* \Delta V \phi_1 dx$$
 (10)
"ブラケット"

$$\omega_{21} \equiv \omega_2 - \omega_1 \tag{11}$$

今、光の周波数を
$$\omega$$
 として
 $E(t) \equiv E_0 \exp(-i\omega t)$ (12)
とする。
 $\Delta V(x,t) = -\mu_x E = -\mu_x E_0 \exp(-i\omega t)$ (13)
ただし $\mu_x \equiv -ex$ (14)
を(9)に代入すると、
 $\frac{dc_2}{dt} = \frac{i}{\hbar} E_0 \langle \phi_2 | \mu_x | \phi_1 \rangle e^{-i(\omega - \omega_{21})t}$ (15)
1

(15)の一般解は、

$$c_2(t) = -\frac{E_0 \langle \phi_2 | \mu_x | \phi_1 \rangle}{\hbar(\omega - \omega_{21})} e^{-i(\omega - \omega_{21})t}$$
(16)

 E_2

 E_1

 $\hbar\omega_{21}$

Ψ

遷移確率(=光吸収率)

時刻 t = 0 までは光なし、 $t \ge 0$ において光を照射するとする。 (15)より、 $t \ge 0$ において

 $\therefore \varphi_1 \rightarrow \varphi_2$ の遷移確率は、

 $E_2 > E_1$ であれば、このとき電子のエネルギーが増加するので、 光エネルギーは吸収される。つまり、(18)は光吸収率を表す。

※ 厳密には、光も量子化して考えると(後述)、光が減衰することが導かれる。

 ψ_1

遷移確率の式の物理的な意味

選択則: $\langle \phi_2 | \mu_x | \phi_1 \rangle$ の項

 $\phi_1 \ge \phi_2$ が電界の向きxに対して反対の対称性(パリティ)を持つときのみ $\langle \phi_2 | \mu_x | \phi_1 \rangle \neq 0 \ge 0$ 、準位間の遷移が許される

例えば、

$$\langle \phi_2 | \mu_x | \phi_1 \rangle = -\frac{2e}{L} \int_{-\infty}^{\infty} \sin\left(\frac{2\pi}{L}x\right) \cdot x \cdot \cos\left(\frac{\pi}{L}x\right) dx \neq 0$$

$$\langle \phi_3 | \mu_x | \phi_1 \rangle =$$

$$\langle \phi_3 | \mu_x | \phi_2 \rangle =$$

$$\langle \phi_4 | \mu_x | \phi_2 \rangle =$$

選択則: $\langle \phi_2 | \mu_x | \phi_1 \rangle$ の項

同様に、水素原子の準位間遷移を考えると、例えば、 $1s \leftrightarrow 2p \lor 2s \leftrightarrow 2p$ の遷移は許容されるが、 $1s \leftrightarrow 2s$ などの間の光遷移は起こらない。

(補足)半導体量子井戸準位間の選択則

※ 逆に、t が短い場合、光の周波数が完全に準位間エネルギーに一致しなくても遷移が起こり得ることを 意味する。これは、時間とエネルギーの不確定さの積がħ 程度以下になり得ないことに相当する。

半古典論による分極と感受率

分極の期待値を求めて、古典論(ローレンツモデル)と比較したい。

x 方向の分極の期待値は^{※1}

 $\langle P_x \rangle = \langle \Psi | P_x | \Psi \rangle = N_0 \langle \Psi | \mu_x | \Psi \rangle \tag{1}$

$$\Psi(x,t) = c_1(t)\varphi_1(x,t) + c_2(t)\varphi_2(x,t)$$
(2)

を代入して、

選択則(#100)の対称性の議論により、(3)右辺の最初の2項は零。 #87(5)より、(3)は^{※2}

$$\langle P_{x} \rangle = N_{0} [c_{1}^{*} c_{2} \langle \phi_{1} | \mu_{x} | \phi_{2} \rangle e^{-i\omega_{21}t} + c_{2}^{*} c_{1} \langle \phi_{2} | \mu_{x} | \phi_{1} \rangle e^{i\omega_{21}t}]$$
(4)

※1: 一般に、物理量Aの期待値は、($\Psi|A|\Psi$)となる。(#153参照) ※2: (4)から明らかなように、量子論的には、分極は2つのエネルギー準位の"ビート"として発生する。 $c_1 \ge c_2$ のどちらかが零の場合、(P_x) = 0 である。 (4)において、 $c_1 \approx 1$ 、 c_2 に #97(16) を用いると、

$$\langle P_{\chi} \rangle = -\frac{N_0}{\hbar} |\langle \phi_1 | \mu_{\chi} | \phi_2 \rangle|^2 \left(\frac{E_0 e^{-i\omega t}}{\omega - \omega_{21}} + \frac{E_0^* e^{i\omega t}}{\omega - \omega_{21}} \right)$$
(5)

実際は、光電界E(t)は全ての周波数 $\omega(-\infty \sim +\infty)$ を積分する必要がある。 従って、(5)第2項の ω を- ω に交換しても良く、 $E_0^*(-\omega) = E_0(\omega)$ を用いて、

$$\langle P_{x} \rangle = -\frac{N_{0}}{\hbar} |\langle \phi_{1} | \mu_{x} | \phi_{2} \rangle|^{2} \left(\frac{1}{\omega - \omega_{21}} - \frac{1}{\omega + \omega_{21}} \right) E_{0} e^{-i\omega t}$$

$$= -\frac{N_{0}}{\hbar} |\langle \phi_{1} | \mu_{x} | \phi_{2} \rangle|^{2} \frac{2\omega_{21}}{\omega^{2} - \omega_{21}^{2}} E_{0} e^{-i\omega t}$$

$$(6)$$

感受率
$$\chi(\omega) = -\frac{N_0}{\varepsilon_0 \hbar} |\langle \phi_1 | \mu_x | \phi_2 \rangle|^2 \frac{2\omega_{21}}{\omega^2 - \omega_{21}^2}$$
 (7)

ローレンツモデルとの比較

半古典モデル:
$$\chi(\omega) = -\frac{N_0}{\varepsilon_0 \hbar} |\langle \phi_1 | \mu_x | \phi_2 \rangle|^2 \frac{2\omega_{21}}{\omega^2 - \omega_{21}^2}$$
 (7)

ー方、ローレンツモデルにおいて、抵抗(減衰)がない($\gamma=0$)場合、 感受率は#70(1)より、

となり、(7)と同じ形になる。

ここで、古典論における固有振動数 ω_0 が 2準位系のエネルギー差 ω_{21} に対応する^{*}

※抵抗がある(γ>0)場合、強制振動周波数Ω(#68)が ω₂₁に対応する

より正確に、ローレンツモデルでは、#79(1)のように複数の極の和として表される。

振動子の強さと周波数が定量的に導かれる以外は、 ローレンツモデルでも同じ結果が得られる

※いま減衰を考えていない(γ=0)ので、(7)および(8)ではIm(χ)=0(光吸収なし)となった。(実際、このとき電子は 2つの準位の間で振動を繰り返し、光強度は減衰しない。)しかし、半古典モデルにおいても、密度行列を用い ることで双極子モーメントの減衰を取り入れることができ、その結果、Im(χ)>0となり光吸収が導かれる。

誘導放出

初期条件で φ_2 の準位にある場合($c_1(0)=1$)、全く同様に摂動論により $\varphi_2 \rightarrow \varphi_1$ への遷移確率が導かれる。

このとき、光エネルギーは増幅し、この現象を誘導放出という。

<u>2準位系では、光吸収確率と誘導</u> 放出確率は等しくなる。

実際は、多数の電子が存在するので、 <u>2つの準位の電子数の差によって、光</u> が吸収されるか増幅されるか決まる。

N₂ > N₁なら増幅 N₂ < N₁なら吸収

· 10-

 ψ_1

アウトライン

- 1. はじめに
- ... 光と物質の相互作用
 - 物質の中の光
 - 1. 波動方程式, 複素屈折率と減衰率
 - 2. 因果律とクラマース・クローニッヒの関係式
 - 光に対する物質の応答
 - 3. 金属の光学応答:ドルーデモデル
 - 4. 金属以外の光学応答:ローレンツモデル
 - 5. 半古典的モデルによる物質の光学応答
 - 6. <u>半導体の光学応答</u>
- Ⅲ. 光の量子論の基礎
 - 7. 粒子性と波動性
 - 8. 電磁界の量子化:光子数状態・コヒーレント状態
 - 9. 昇降演算子
 - 10. 自然放出

結晶のバンド構造

- 結晶: 原子や分子を周期的に並べたもの
- ・離散的なエネルギー準位が "k 依存性"を持つことで、"エネルギー バンド"が生じる → "k"とはなにか?

ブロッホの定理

kとは、ブロッホの定理により定義される"結晶運動量"である。※

 ブロッホの定理

 ポテンシャルV(x)が周期的なとき、エネルギー固有状態における

 電子の波動関数 $\phi(x)$ は次式で表される

 $\phi(x) = e^{ikx}u_k(x)$
 $u_k(x + a) = u_k(x)$
 $u_k(x)$ はV(x)と同じ周期を持つ周期関数

 3次元の場合、x をr に置き換える必要がある

ブロッホの定理が意味することは何か?

※ よく間違われるが、"運動量"ではない。運動量は、"波動関数そのもの"の波数(ħ/i ∂/∂t)であるが、 次頁で示すように、結晶運動量は"波動関数の包絡線"の波数に相当する。

N. W. Ashcroft and N.W.D. Mermin, Solid State Physics (1976).

111

結晶中の波動関数

- 各原子の周りの波動関数は、 (a離れた)隣りの原子の周り の波動関数に比べて位相差 Δθを持つ
- ・ 周期性より、この位相差△∂は、 場所によらず一定である(=ブ ロッホの定理が意味すること)
- ざっくり言えば、kは、※

$$k = \frac{\Delta\theta}{a} \tag{1}$$

を意味する

- ※ 直観的イメージを重視した非常にざっくりした定義で ある。厳密には以下の点で注意が必要である。
- 1次元の場合は、「a = 原子の間隔」で問題ないが、 厳密には「a = 格子定数 = 単位格子の一辺の長さ」 である。3次元の場合、"基本単位格子"でない限り (ダイヤモンド構造など多くの場合)、単位格子内に 複数の原子が存在するので、そのまま「a = 再隣接 原子との距離」にはならない。
- 隣接する"複数の電子"の波動関数がイメージし易いが、あくまでもφは電子1個の波動関数である。

結晶のバンド図

- 周期aが大きい(十分離れている)とき
 - ・ 隣の原子の影響は受けない
 - 隣の波動関数の位相と関係なく エネルギーが求まる

- ② 周期aが小さい(孤立原子のφ が重なっている)とき
 - 隣の原子が干渉し、影響を及ぼす

結晶のバンド図

結晶のポテンシャル V(r) が与えられたとき、シュレディンガー方程式の解として得られるエネルギー固有状態を全ての結晶運動量 k についてプロットしたもの

114

結晶のバンド図のイメージ(例)

実際の結晶

Sze and Ng, Physics of Semiconductor Devices, pp. 11-13, John Wiley & Sons (2007).

金属と絶縁体(半導体)

金属

下から順に電子をつめていくと、連続 したバンドの途中まで埋まる ⇔ フェルミレベル(最高充満準位)が バンドの途中に存在

→ 外部電界をかけると電子が自由に動く(自由空間と同様)

Ashcroft and Mermin, Solid State Physics (1976). Cohen and Bergstresser, Phys. Rev., **141**, 789 (1966).

絶縁体(半導体)

- フェルミレベルがバンドギャップ中に存在
 → 導電できない
- 特に、バンドギャップ E_g が小さい絶縁体
 を"半導体"と呼ぶ※

※大雑把に言えば、*E_g*が約2eV以下で、室温で伝導
 帯に熱励起された電子により導電が観測できるもの.

半導体

•単結晶半導体: Si, Ge, Sn (IV族) •化合物半導体: GaAs, InP, InGaAsP, AIN, GaN, AlGaN, … (III/V族) ZnO, ZnS, ZnSe, CdTe, … (II/VI族)

Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
**Actinide series	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

直接遷移型/間接遷移型半導体

直接遷移型

間接遷移型

M.L. Cohen and T.K. Bergstresser, Phys. Rev., 141, 789 (1966).

直接遷移型半導体中の光遷移

 $\phi_1(x)$, $\phi_2(x)$ ともに 結晶運動量 k = 0、つまり隣接原子で同位相なので、 $\phi_1(x) \propto \phi_p(x) + \phi_p(x-a) + \phi_p(x-2a) + \phi_p(x-3a) + \cdots$ $\phi_2(x) \propto \phi_s(x) + \phi_s(x-a) + \phi_s(x-2a) + \phi_s(x-3a) + \cdots$

 $\therefore \langle \phi_2 | x | \phi_1 \rangle \approx \sum_n \left[\int_{-\infty}^{+\infty} \phi_p^*(x - na) x \phi_s(x - na) dx \right] \neq 0$ $\Rightarrow \phi_1 \leftrightarrow \phi_2 \| \overline{ce} \delta h \overline{ce} \delta h$

間接遷移型半導体中の光遷移

 $\phi_2(x)$ の結晶運動量 $k = \pi/a$ 、つまり隣接原子で逆位相なので、

 $\phi_1(x) \propto \phi_p(x) + \phi_p(x-a) + \phi_p(x-2a) + \phi_p(x-3a) + \cdots$ $\phi_2(x) \propto \phi_s(x) - \phi_s(x-a) + \phi_s(x-2a) - \phi_s(x-3a) + \cdots$

 $\therefore \langle \phi_2 | x | \phi_1 \rangle \approx \sum_n \left[(-1)^n \int_{-\infty}^{+\infty} \phi_p^* (x - na) x \phi_s (x - na) dx \right] = 0$ → $\phi_1 \leftrightarrow \phi_2$ 間で遷移は起こらない

半導体中の光遷移

より一般的に、 $\phi_1(x) = \underline{e^{ik_1x}}u_1(x), \quad \phi_2(x) = \underline{e^{ik_2x}}u_2(x)$ のとき、 $\langle \phi_2 | x | \phi_1 \rangle = \int_{-\infty}^{+\infty} u_2^*(x) x \, u_1(x) e^{i(k_1 - k_2)x} dx$ $\xrightarrow{u}_{n-2} \xrightarrow{u}_{n-1} \xrightarrow{u}_{n} \xrightarrow{u}_{x} = \left| \sum e^{i(k_1 - k_2)an} \right| \int_0^a u_2^*(x')x' u_1(x')e^{i(k_1 - k_2)x'}dx'$ $\therefore x \equiv an + x'$ と置き、 u(x)の周期性(#111)を用いる $\int_{a}^{a} \phi_{2}^{*}(x')x' \phi_{1}(x')dx'$ δ_{k_1,k_2} 1周期分 $(0 \le x \le a)$ の積分 ∴ <u>k₁ = k₂でない限り光遷移しない</u> 言い換えると、光の波長≫格子定数 *a* なので、 光と相互作用しても電子の結晶運動量はほとんど ネルボ <u>変わらない</u> \rightarrow 初めから $k_1 = k_2$ じゃないとダメ ⇔フォノン等を介在してkの変化を得ることで、遷移する ことは、(一般的に非常に効率は低いが)可能

(補足)化合物半導体

(補足)化合物半導体混晶

半導体の何がそんなに良いのか?

- PN接合を作ることで,接合面(空乏層)に電子の出し入れが効率良くできる。
- 反転分布状態(N₂ > N₁の状態)を電気的に簡単に作ることができる。
 - → LED(発光ダイオード)、半導体レーザー
- ・PN接合面に電界が発生するので、外部電界をかけなくても電子が引き出せる → 太陽電池

これまで(3,4,5,6)のまとめ

- □ 光電界により物質中の分極が変化する →「物質をどう記述するか?」を議論した
- □ 金属中の自由電子の動きは、古典的にドルーデモデルにより解析可能
 - 金属の光学特性は、プラズマ周波数(ε=0となる周波数)を境に劇的に変化する
 - プラズマ周波数は、電子の集団振動の固有周波数として理解できる
- □ 束縛電子の動きは、古典的にローレンツモデルにより解析可能
 - 振動子の固有振動と光が結合することで、屈折率の波長依存性(分散)が生じる
 - 実際の物質は、複数の極(振動子)の重ね合わせとしてモデル化できる
 - 振動子の強さ、固有周波数、減衰率はフィッティングで求める

これまで(3,4,5,6)のまとめ

□ 振動子の強さや固有周波数を定量的に議論するには、半古典モデルが必要

- □ 半古典モデル:電子を量子論的に扱う(光は古典的扱いのまま)
 - "光による遷移"は、「光電界により電子の波動関数が偏り、その結果、他のエネル ギー固有状態の振幅が増える現象」と解釈できる
 - 遷移率は、時間に依存した摂動論により定量的に議論できる
 - その結果、(空間的)選択則やフェルミの黄金律が導かれる
- □結晶:原子や分子が周期的に並び、ポテンシャルが周期的なもの
 - 結晶中の波動関数は、ブロッホの定理を満たし、結晶運動量 k により記述される
 - 半導体は結晶の一種であり、バンドギャップが小さな絶縁体のこと
 - 選択則より、結晶運動量が十分に近い状態間のみ光遷移が許される
 - 直接遷移型半導体(GaAsなど): k が一致しているので効率良く遷移が起こる
 - 間接遷移型半導体(Siなど): k が異なるので一般的に遷移効率は低い